Bitcoin: A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto
October 31, 2008
Abstract
A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.
1. Introduction
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not really possible, since financial institutions cannot avoid mediating disputes. The cost of mediation increases transaction costs, limiting the minimum practical transaction size and cutting off the possibility for small casual transactions, and there is a broader cost in the loss of ability to make non-reversible payments for non-reversible services. With the possibility of reversal, the need for trust spreads. Merchants must be wary of their customers, hassling them for more information than they would otherwise need. A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties can be avoided in person by using physical currency, but no mechanism exists to make payments over a communications channel without a trusted party.
What is needed is an electronic payment system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party. Transactions that are computationally impractical to reverse would protect sellers from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed timestamp server to generate computational proof of the chronological order of transactions. The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes.
2. Transactions
We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the next by digitally signing a hash of the previous transaction and the public key of the next owner and adding these to the end of the coin. A payee can verify the signatures to verify the chain of ownership.
The problem of course is the payee can't verify that one of the owners did not double-spend the coin. A common solution is to introduce a trusted central authority, or mint, that checks every transaction for double spending. After each transaction, the coin must be returned to the mint to issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent. The problem with this solution is that the fate of the entire money system depends on the company running the mint, with every transaction having to go through them, just like a bank.
We need a way for the payee to know that the previous owners did not sign any earlier transactions. For our purposes, the earliest transaction is the one that counts, so we don't care about later attempts to double-spend. The only way to confirm the absence of a transaction is to be aware of all transactions. In the mint based model, the mint was aware of all transactions and decided which arrived first. To accomplish this without a trusted party, transactions must be publicly announced[1], and we need a system for participants to agree on a single history of the order in which they were received. The payee needs proof that at the time of each transaction, the majority of nodes agreed it was the first received.
3. Timestamp Server
The solution we propose begins with a timestamp server. A timestamp server works by taking a hash of a block of items to be timestamped and widely publishing the hash, such as in a newspaper or Usenet post[2-5]. The timestamp proves that the data must have existed at the time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp reinforcing the ones before it.
4. Proof-of-Work
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-of-work system similar to Adam Back's Hashcash[6], rather than newspaper or Usenet posts. The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash.
For our timestamp network, we implement the proof-of-work by incrementing a nonce in the block until a value is found that gives the block's hash the required zero bits. Once the CPU effort has been expended to make it satisfy the proof-of-work, the block cannot be changed without redoing the work. As later blocks are chained after it, the work to change the block would include redoing all the blocks after it.
The proof-of-work also solves the problem of determining representation in majority decision making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority decision is represented by the longest chain, which has the greatest proof-of-work effort invested in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the fastest and outpace any competing chains. To modify a past block, an attacker would have to redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the work of the honest nodes. We will show later that the probability of a slower attacker catching up diminishes exponentially as subsequent blocks are added.
To compensate for increasing hardware speed and varying interest in running nodes over time, the proof-of-work difficulty is determined by a moving average targeting an average number of blocks per hour. If they're generated too fast, the difficulty increases.
5. Network
The steps to run the network are as follows:
- New transactions are broadcast to all nodes.
- Each node collects new transactions into a block.
- Each node works on finding a difficult proof-of-work for its block.
- When a node finds a proof-of-work, it broadcasts the block to all nodes.
- Nodes accept the block only if all transactions in it are valid and not already spent.
- Nodes express their acceptance of the block by working on creating the next block in the chain, using the hash of the accepted block as the previous hash.
Nodes always consider the longest chain to be the correct one and will keep working on extending it. If two nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other first. In that case, they work on the first one they received, but save the other branch in case it becomes longer. The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that were working on the other branch will then switch to the longer one.
New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped messages. If a node does not receive a block, it will request it when it receives the next block and realizes it missed one.
6. Incentive
By convention, the first transaction in a block is a special transaction that starts a new coin owned by the creator of the block. This adds an incentive for nodes to support the network, and provides a way to initially distribute coins into circulation, since there is no central authority to issue them. The steady addition of a constant of amount of new coins is analogous to gold miners expending resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.
The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.
The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more CPU power than all the honest nodes, he would have to choose between using it to defraud people by stealing back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules, such rules that favour him with more new coins than everyone else combined, than to undermine the system and the validity of his own wealth.
7. Reclaiming Disk Space
Once the latest transaction in a coin is buried under enough blocks, the spent transactions before it can be discarded to save disk space. To facilitate this without breaking the block's hash, transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash. Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do not need to be stored.
A block header with no transactions would be about 80 bytes. If we suppose blocks are generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of 1.2GB per year, storage should not be a problem even if the block headers must be kept in memory.
8. Simplified Payment Verification
It is possible to verify payments without running a full network node. A user only needs to keep a copy of the block headers of the longest proof-of-work chain, which he can get by querying network nodes until he's convinced he has the longest chain, and obtain the Merkle branch linking the transaction to the block it's timestamped in. He can't check the transaction for himself, but by linking it to a place in the chain, he can see that a network node has accepted it, and blocks added after it further confirm the network has accepted it.
As such, the verification is reliable as long as honest nodes control the network, but is more vulnerable if the network is overpowered by an attacker. While network nodes can verify transactions for themselves, the simplified method can be fooled by an attacker's fabricated transactions for as long as the attacker can continue to overpower the network. One strategy to protect against this would be to accept alerts from network nodes when they detect an invalid block, prompting the user's software to download the full block and alerted transactions to confirm the inconsistency. Businesses that receive frequent payments will probably still want to run their own nodes for more independent security and quicker verification.
9. Combining and Splitting Value
Although it would be possible to handle coins individually, it would be unwieldy to make a separate transaction for every cent in a transfer. To allow value to be split and combined, transactions contain multiple inputs and outputs. Normally there will be either a single input from a larger previous transaction or multiple inputs combining smaller amounts, and at most two outputs: one for the payment, and one returning the change, if any, back to the sender.
It should be noted that fan-out, where a transaction depends on several transactions, and those transactions depend on many more, is not a problem here. There is never the need to extract a complete standalone copy of a transaction's history.
10. Privacy
The traditional banking model achieves a level of privacy by limiting access to information to the parties involved and the trusted third party. The necessity to announce all transactions publicly precludes this method, but privacy can still be maintained by breaking the flow of information in another place: by keeping public keys anonymous. The public can see that someone is sending an amount to someone else, but without information linking the transaction to anyone. This is similar to the level of information released by stock exchanges, where the time and size of individual trades, the "tape", is made public, but without telling who the parties were.
As an additional firewall, a new key pair should be used for each transaction to keep them from being linked to a common owner. Some linking is still unavoidable with multi-input transactions, which necessarily reveal that their inputs were owned by the same owner. The risk is that if the owner of a key is revealed, linking could reveal other transactions that belonged to the same owner.
11. Calculations
We consider the scenario of an attacker trying to generate an alternate chain faster than the honest chain. Even if this is accomplished, it does not throw the system open to arbitrary changes, such as creating value out of thin air or taking money that never belonged to the attacker. Nodes are not going to accept an invalid transaction as payment, and honest nodes will never accept a block containing them. An attacker can only try to change one of his own transactions to take back money he recently spent.
The race between the honest chain and an attacker chain can be characterized as a Binomial Random Walk. The success event is the honest chain being extended by one block, increasing its lead by +1, and the failure event is the attacker's chain being extended by one block, reducing the gap by -1.
The probability of an attacker catching up from a given deficit is analogous to a Gambler's Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an infinite number of trials to try to reach breakeven. We can calculate the probability he ever reaches breakeven, or that an attacker ever catches up with the honest chain, as follows[8]:
Given our assumption that , the probability drops exponentially as the number of blocks the attacker has to catch up with increases. With the odds against him, if he doesn't make a lucky lunge forward early on, his chances become vanishingly small as he falls further behind.
We now consider how long the recipient of a new transaction needs to wait before being sufficiently certain the sender can't change the transaction. We assume the sender is an attacker who wants to make the recipient believe he paid him for a while, then switch it to pay back to himself after some time has passed. The receiver will be alerted when that happens, but the sender hopes it will be too late.
The receiver generates a new key pair and gives the public key to the sender shortly before signing. This prevents the sender from preparing a chain of blocks ahead of time by working on it continuously until he is lucky enough to get far enough ahead, then executing the transaction at that moment. Once the transaction is sent, the dishonest sender starts working in secret on a parallel chain containing an alternate version of his transaction.
The recipient waits until the transaction has been added to a block and blocks have been linked after it. He doesn't know the exact amount of progress the attacker has made, but assuming the honest blocks took the average expected time per block, the attacker's potential progress will be a Poisson distribution with expected value:
To get the probability the attacker could still catch up now, we multiply the Poisson density for each amount of progress he could have made by the probability he could catch up from that point:
Rearranging to avoid summing the infinite tail of the distribution...
Converting to C code...
#includedouble AttackerSuccessProbability(double q, int z) { double p = 1.0 - q; double lambda = z * (q / p); double sum = 1.0; int i, k; for (k = 0; k <= z; k++) { double poisson = exp(-lambda); for (i = 1; i <= k; i++) poisson *= lambda / i; sum -= poisson * (1 - pow(q / p, z - k)); } return sum; }
Running some results, we can see the probability drop off exponentially with .
q=0.1 z=0 P=1.0000000 z=1 P=0.2045873 z=2 P=0.0509779 z=3 P=0.0131722 z=4 P=0.0034552 z=5 P=0.0009137 z=6 P=0.0002428 z=7 P=0.0000647 z=8 P=0.0000173 z=9 P=0.0000046 z=10 P=0.0000012 q=0.3 z=0 P=1.0000000 z=5 P=0.1773523 z=10 P=0.0416605 z=15 P=0.0101008 z=20 P=0.0024804 z=25 P=0.0006132 z=30 P=0.0001522 z=35 P=0.0000379 z=40 P=0.0000095 z=45 P=0.0000024 z=50 P=0.0000006
Solving for P less than 0.1%...
P < 0.001 q=0.10 z=5 q=0.15 z=8 q=0.20 z=11 q=0.25 z=15 q=0.30 z=24 q=0.35 z=41 q=0.40 z=89 q=0.45 z=340
12. Conclusion
We have proposed a system for electronic transactions without relying on trust. We started with the usual framework of coins made from digital signatures, which provides strong control of ownership, but is incomplete without a way to prevent double-spending. To solve this, we proposed a peer-to-peer network using proof-of-work to record a public history of transactions that quickly becomes computationally impractical for an attacker to change if honest nodes control a majority of CPU power. The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.
References
-
W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998. ↩
-
H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal trust requirements," In 20th Symposium on Information Theory in the Benelux, May 1999. ↩ ↩
-
S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of Cryptology, vol 3, no 2, pages 99-111, 1991. ↩
-
D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping," In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993. ↩
-
S. Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th ACM Conference on Computer and Communications Security, pages 28-35, April 1997. ↩ ↩
-
A. Back, "Hashcash - a denial of service counter-measure," http://www.hashcash.org/papers/hashcash.pdf, 2002. ↩
-
R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980 Symposium on Security and Privacy, IEEE Computer Society, pages 122-133, April 1980. ↩
-
W. Feller, "An introduction to probability theory and its applications," 1957. ↩
Bitcoin expliqué par son inventeur
Bitcoin : Système de Monnaie Electronique en Pair-à-Pair.
Satoshi Nakamoto – satoshin@gmx.com – www.bitcoin.org
(Traducteurs: Benkebab, Grondilu, Mackila)
Résumé. Un système de monnaie électronique entièrement en pair-à-pair permettrait d’effectuer des paiements en ligne directement d’un individu à un autre sans passer par une institution financière. Les signatures numériques offrent une telle solution, mais perdent leur intérêt dès lors qu’un tiers de confiance est requis pour empêcher le double paiement. Nous proposons une solution au problème du double paiement en utilisant un réseau pair-à-pair. Le réseau horodate les transactions à l’aide d’une fonction de hachage qui les traduit en une chaîne continue de preuves de travail (des empreintes), formant un enregistrement qui ne peut être modifié sans ré-effectuer la preuve de travail. La plus longue chaîne (d’empreintes) sert non seulement de preuve du déroulement des évènements constatés, mais également de preuve qu’elle provient du plus grand regroupement de puissance de calcul. Aussi longtemps que la majorité de la puissance de calcul (CPU) est contrôlée par des nœuds qui ne coopèrent pas pour attaquer le réseau, ils généreront la plus longue chaîne et surpasseront les attaquants. Le réseau en lui-même ne requiert qu’une structure réduite. Les messages sont diffusés au mieux, et les nœuds peuvent quitter ou rejoindre le réseau à leur gré, en acceptant à leur retour la chaîne de preuve de travail la plus longue comme preuve de ce qui s’est déroulé pendant leur absence.
1. Introduction
Le commerce sur Internet dépend aujourd’hui presque exclusivement d’institutions financières qui servent de tiers de confiance pour traiter les paiements électroniques. Bien que ce système fonctionne plutôt bien pour la plupart des transactions, il écope toujours des faiblesses inhérentes à son modèle basé sur la confiance. Les transactions totalement irréversibles n’y sont pas vraiment possibles, puisque les institutions financières doivent gérer la médiation de conflits. Le coût de cette médiation augmente les coûts des transactions, limitant en pratique la taille minimale d’une transaction et empêchant la possibilité d’avoir des petites transactions peu coûteuses. L’impossibilité d’avoir des paiements non réversibles pour des services non réversibles engendre un coût encore plus important. Avec la possibilité d’inverser les transactions, le besoin de confiance augmente. Les marchands doivent se méfier de leurs clients, en les harcelant pour obtenir plus d’informations que nécessaire. Une certaine part de fraudes est acceptée comme inévitable. Tous ces coûts et incertitudes de paiement peuvent être évités par l’utilisation d’une monnaie physique, mais aucun mécanisme n’existe pour réaliser des paiements à travers un système de communication sans avoir recours à un tiers de confiance.
Ce dont nous avons besoin, c’est d’un système de paiement électronique basé sur des preuves cryptographiques au lieu d’un modèle basé sur la confiance, qui permettrait à deux parties qui le souhaitent de réaliser des transactions directement entre elles sans avoir recours à un tiers de confiance. Les transactions qui sont informatiquement impossibles à annuler protégeraient les vendeurs de fraudes éventuelles, et un système de compte séquestre pourrait facilement être implémenté pour protéger les acheteurs. Dans ce document, nous proposons une solution au problème de double-dépense en utilisant un serveur horodaté distribué en pair-à-pair pour générer des preuves informatiques de l’ordre chronologique des transactions. Le système est sécurisé tant que des nœuds honnêtes contrôlent ensemble plus de puissance de calcul qu’un groupe de nœuds qui coopéreraient pour réaliser une attaque.
2.Transactions
Nous définissons une pièce électronique comme une chaîne de signatures numériques. Tout propriétaire transfère cette pièce à un autre en signant numériquement une empreinte de la précédente transaction ainsi que la clé publique du nouveau propriétaire et les ajoute à la fin de la pièce. Tout bénéficiaire peut examiner les signatures pour vérifier la chaîne de propriété.

Le problème bien sûr est que le bénéficiaire ne peut vérifier qu’un des précédents propriétaires n’a pas fait de “double dépense” avec la pièce. Une solution courante est d’introduire une autorité centrale de confiance, ou hôtel des Monnaies, qui vérifierait chaque transaction pour éviter la “double dépense”. Après chaque transaction, les pièces doivent être retournées à l’hôtel des Monnaies qui en crée une nouvelle, et seules les pièces issues directement de l’hôtel des Monnaies sont considérées comme n’ayant pas été dépensées deux fois. Le problème de cette solution est que le destin de tout le système monétaire repose sur l’entreprise qui dirige l’hôtel des Monnaies, et que chaque transaction doit passer par eux, comme une banque.
Nous avons besoin d’une méthode pour que le bénéficiaire puisse savoir si les précédents propriétaires n’ont pas signé de transactions précédentes. Pour cela, la transaction la plus ancienne doit être celle qui compte, nous n’avons pas à nous soucier des tentatives ultérieures pour dépenser la pièce en double. La seule manière de confirmer l’absence d’une transaction précédente est d’être au courant de toutes les transactions. Dans le modèle basé sur un hôtel des Monnaies, ce dernier était au courant de toutes les transactions et décidait donc laquelle arrivait en premier. Pour faire de même sans tierce partie, les transactions doivent être annoncées publiquement [1], et nous avons besoin d’un système pour que tous les participants se mettent d’accord sur un seul historique de l’ordre dans laquelle les transactions sont reçues. Le bénéficiaire a besoin d’une preuve qu’à chaque temps d’une transaction, la majorité des noeuds soient d’accord sur le fait qu’elle était la première reçue.
3. Serveur d’Horodatage
La base de la solution proposée est un serveur d’horodatage. Un serveur d’horodatage prend l’empreinte d’un ensemble d’éléments à horodater et publie cette empreinte, à la façon d’une annonce dans un journal ou d’un message sur un forum Usenet [2-5]. L’horodatage prouve que les données ont existé, afin d’être prises en compte dans l’empreinte. Chaque horodatage inclue l’horodatage précédent dans son empreinte, formant une chaîne dont chaque nouvel élément vient confirmer les précédents.
4. Preuve de travail
Pour implémenter un serveur d’horodatage distribué sur un réseau pair-à-pair, il faut utiliser un système basé sur des preuves de travail tel que celui du système Hashcash de Adam Back [6], plutôt qu’un journal ou un message sur un forum Usenet. La preuve de travail nécessite de rechercher une valeur telle que son empreinte, calculée par exemple en utilisant SHA-256, débute par un certain nombre de bits à 0. Le travail requis pour est exponentiellement fonction du nombre de bits à 0 exigés, et peut être validé en effectuant un seul calcul d’empreinte.
Pour notre réseau d’horodatage, nous implémentons la preuve de travail en incrémentant une variable dans le bloc jusqu’à ce qu’une valeur donnant une empreinte ayant suffisamment de bits à 0 soit trouvée. Une fois que l’effort de calcul nécessaire à l’obtention de la preuve de travail a été effectué, il n’est plus possible de modifier le bloc sans refaire cet effort de calcul. Comme de nouveaux blocs sont chaînés à sa suite, l’effort de calcul nécessaire pour modifier un bloc inclue tout l’effort de calcul nécessaire pour modifier tous les blocs suivants.

La preuve de travail résout le problème du choix de la représentativité du vote. Si la majorité était basée sur des voix allouées par adresse IP, le vote pourrait être perverti par quelqu’un capable de s’octroyer beaucoup d’adresses. La preuve de travail est essentiellement basée sur la puissance de calcul (un processeur, une voix). La décision de la majorité est représentée par la chaîne la plus longue, celle qui a nécessité le plus de calculs de preuve de travail. Si la majorité de la puissance de calcul du réseau est contrôlée par des noeuds honnêtes, la chaîne légitime progresse le plus rapidement et distance les chaînes concurrentes. Afin de modifier un ancien bloc, un attaquant devrait recalculer les preuves de travail du bloc modifié et de tous les blocs suivants, pour rattraper et dépasser le travail fournit par les noeuds honnêtes. Nous démontrerons par la suite que la probabilité qu’un attaquant disposant de moins de puissance de calcul puisse rattraper diminue exponentiellement à chaque nouveau bloc ajouté.
Afin de compenser l’amélioration de la puissance de calcul du matériel et l’intérêt changeant de faire fonctionner des noeuds du réseau, la difficulté de la preuve de travail est déterminée par une moyenne de nombre de blocs à trouver par heure. Si ces blocs sont générés trop rapidement, la difficulté augmente.
5. Réseau
Les étapes mises en oeuvre pour faire fonctionner le réseau sont les suivantes :
-
Les nouvelles transactions sont diffusées à tous les nœuds.
-
Chaque nœud regroupe les nouvelles transactions dans un bloc.
-
Chaque nœud travaille à la résolution de la preuve de travail sur son bloc.
-
Quand un nœud trouve une preuve de travail, il diffuse ce bloc à tous les nœuds.
-
Les nœuds n’acceptent le bloc que si toutes les transactions qu’il contient sont valides et n’ont pas déjà été dépensées.
-
Les nœuds expriment l’acceptation du bloc en travaillant sur un nouveau bloc dans la chaîne, ce nouveau bloc ayant comme empreinte précédente celle du bloc accepté.
Les nœuds considèrent toujours la chaîne la plus longue comme étant la chaîne légitime, et travaillent à étendre celle-ci. Si deux nœuds diffusent deux versions différentes du bloc suivant simultanément, certains des noeuds vont recevoir l’une ou l’autre en premier. Dans cette situation, chacun travaille sur le bloc reçu en premier, mais conserve l’autre branche au cas ou celle-ci devienne la plus longue. Cette liaison sera rompue quand la preuve de travail suivante sera trouvée et qu’une branche deviendra plus longue que l’autre ; les noeuds qui travaillaient alors sur l’autre branche changeront pour la plus longue.
Les diffusions de nouvelles transactions n’ont pas besoin d’atteindre tous les nœuds. A partir du moment ou elles atteignent suffisamment de nœuds, elles se retrouveront dans un bloc en peu de temps. Les diffusions des blocs tolèrent la perte de messages. Si un nœud ne reçoit pas un bloc, il le demandera lors de la réception du bloc suivant, lorsqu’il réalisera qu’il lui en manque un.
6. Incitation
Par convention, la première transaction d’un bloc est une transaction spéciale qui crée une nouvelle pièce appartenant au créateur du bloc. Cela incite les nœuds à participer au réseau, et permet la distribution initiale de la monnaie, puisqu’il n’y a pas d’autorité centralisée pour le faire. Cet ajout régulier d’une quantité constante de monnaie se rapproche de l’effort fourni par des mineurs pour ajouter de l’or en circulation. Dans notre cas, l’effort se compose de puissance de calcul et de temps.
L’incitation peut aussi être financée par des frais de transaction. Si la valeur de sortie d’une transaction est inférieure à sa valeur d’entrée, la différence correspond aux frais de transaction qui sont ajoutés à la valeur d’incitation du bloc contenant cette transaction. Une fois que la quantité prédéterminée de monnaie sera entrée en circulation, l’incitation pourra passer sur un financement entièrement basé sur les frais de transaction, et ne provoquer aucune inflation.
L’incitation peut encourager les nœuds à rester honnêtes. Si un attaquant cupide a les moyens d’obtenir plus de puissance de calcul que l’ensemble des nœuds honnêtes, il peut choisir entre escroquer les gens en récupérant les paiements, ou utiliser sa puissance pour générer de la nouvelle monnaie. Il doit trouver plus intéressant de jouer le jeu, qui le favorise nettement car dès lors il générera plus de nouvelle monnaie que l’ensemble des autres nœuds, plutôt que de saper le système et la valeur de sa propre richesse.
7. Économiser l’Espace Disque
Une fois que la dernière transaction concernant une pièce est enfouie sous assez de blocs, les transactions passées peuvent être supprimées pour économiser de l’espace disque. Pour permettre cela sans invalider l’empreinte du bloc, les transactions sont résumées dans un arbre de Merkle [7][2][5], dont seule la racine est comprise dans l’empreinte du bloc. Les anciens blocs peuvent être compressés en coupant des branches de l’arbre. Les empreintes intermédiaires n’ont pas besoin d’être stockées.

Un en-tête de bloc sans transaction pèse environ 80 octets. Si nous supposons que les blocs sont générés toutes les 10 minutes, cela représente 80 octets * 6 * 24 * 365 = 4.2Mo par an. En 2008, les systèmes informatiques sont vendus avec en moyenne 2Go de capacité de mémoire vive, et, la Loi de Moore prédisant une croissance de 1.2Go par an, le stockage ne devrait donc pas poser de problème, même si l’ensemble des en-têtes de bloc devait être conservés en mémoire vive.
8. Vérification de Paiement Simplifié
Il est possible de vérifier des paiements sans faire fonctionner un nœud complet du réseau. Un utilisateur n’a besoin de conserver qu’une copie des en-têtes de la chaîne de preuves la plus longue, ce qu’il peut obtenir à travers des requêtes sur les nœuds du réseau jusqu’à ce qu’il soit convaincu d’avoir la plus longue chaîne, puis en récupérant la branche de l’arbre de Merkle liant la transaction avec le bloc dans lequel elle est horodatée. L’utilisateur ne peut pas vérifier la transaction lui même, mais en la liant à sa place dans la chaîne, il peut voir qu’un nœud du réseau l’a acceptée, et les blocs suivants confirment davantage l’acceptation du réseau.

En tant que telle, la vérification est fiable tant que des noeuds honnêtes contrôlent le réseau, mais est plus vulnérable si le réseau est compromis par un attaquant disposant de plus de puissance de calcul. Bien que les nœuds du réseau puissent vérifier les transactions eux-mêmes, la méthode simplifiée peut être dupée par des transactions forgées par l’attaquant, tant que celui-ci a les moyens de dépasser la puissance de calcul du réseau. Une stratégie pour se protéger d’une telle attaque pourrait être de recevoir des alertes des noeuds du réseau lorsque ceux ci détectent un bloc invalide, demandant au logiciel de l’utilisateur de télécharger le bloc complet et les transactions suspectes pour vérifier l’incohérence. Les entreprises qui reçoivent fréquemment des paiements auront certainement intérêt à faire fonctionner leur propres noeuds afin d’obtenir une sécurité plus indépendante et des vérifications plus rapides.
9. Combinaison et Fractionnement de Valeur
Bien qu’il soit possible de traiter les pièces séparément, il serait peu pratique de générer une transaction différente pour chaque centime lors d’un transfert. Afin de permettre la combinaison et le fractionnement de la monnaie, les transactions comprennent de multiples entrées et sorties. Normalement, il y a soit une seule entrée depuis une grosse transaction précédente, ou plusieurs entrées combinant des montants plus faibles, et au maximum deux sorties : une pour le paiement, et l’autre pour renvoyer le change, s’il existe, à l’émetteur.

Il faut noter que la dispersion, lorsqu’une transaction dépend de plusieurs transactions, et que ces transactions dépendent elles-mêmes de beaucoup plus de transactions, n’est pas un problème. Il n’y a jamais besoin de récupérer l’historique complet d’une transaction.
10. Confidentialité
Le système bancaire classique garantit un certain niveau de confidentialité en limitant l’accès aux informations aux parties concernées et aux tiers de confiance. La nécessité de publier toutes les transactions exclut cette méthode, mais la confidentialité peut être obtenue en interrompant la circulation de l’information à un autre niveau : en gardant les clés publiques anonymes. Il est possible de voir que quelqu’un envoie un certain montant à quelqu’un d’autre, mais sans aucun lien avec des personnes. Ceci est similaire au niveau d’information disponible sur les marchés d’échange, où la date, le montant et le “cours” retenu pour chaque échange sont publics, mais sans révéler l’identité des parties.

Comme barrière supplémentaire, une nouvelle paire de clés peut être utilisée pour chaque transaction, pour éviter d’être reliées à un propriétaire commun. Une certaine relation est cependant inévitable avec les transactions multi-entrées, qui révèlent nécessairement que leurs entrées étaient possédées par le même propriétaire. L’évènement redouté étant que si le propriétaire d’une des clés est révélé, les liaisons permettent la révélation des autres transactions du même propriétaire.
11. Calculs
Considérons le cas d’un attaquant essayant de générer une chaîne alternative plus rapidement que la chaîne légitime. Même en cas de réussite, cela ne rendrait pas le système vulnérable à des modifications arbitraires, telles que la création monétaire à partir de rien, ou l’appropriation d’argent qui n’a jamais appartenu à l’attaquant. Les noeuds n’acceptent pas de transactions invalides comme paiement, et les noeuds honnêtes n’accepteront jamais un bloc contenant une de ces transactions. Un attaquant ne peut que modifier une de ses propres transactions afin de récupérer de l’argent qu’il vient de dépenser.
La course entre la chaîne légitime et la chaîne de l’attaquant peut être caractérisée comme une marche aléatoire binaire. L’évènement succès est l’allongement de la chaîne légitime, augmentant son avance de +1, et l’évènement échec est l’allongement de la chaîne de l’attaquant, réduisant son retard de -1.
La probabilité qu’un attaquant rattrape son retard est analogue au problème de ruine du joueur. Imaginons un joueur ayant des crédits illimités, démarrant en négatif, et pouvant jouer un nombre infini de parties pour tenter d’atteindre le seuil de rentabilité. La probabilité qu’il y arrive, ou qu’un attaquant réussisse à rattraper la chaîne légitime, se calcule comme ceci [8] :
p = probabilité qu’un noeud honnête trouve le prochain bloc
q = probabilité que l’attaquant trouve le prochain bloc
qz= probabilité que l’attaquant réussisse à rattraper la chaîne avec z blocs de retard

Etant donnée notre hypothèse p>q, la probabilité diminue exponentiellement en fonction du nombre de bloc que l’attaquant a à rattraper. Avec les probabilités contre lui, s’il n’a pas une série chanceuse très tôt, ses chances deviennent infimes au fur et à mesure qu’il prend plus de retard.
Nous nous intéressons maintenant au temps que le destinataire d’une nouvelle transaction doit attendre avant d’être suffisamment rassuré sur le fait que l’émetteur ne pourra pas modifier la transaction. Nous supposons que l’émetteur est un attaquant qui souhaite faire croire au destinataire qu’il a été payé depuis un certain temps, puis souhaite modifier la transaction pour récupérer l’argent de la transaction après un certain délai. Le destinataire sera alerté quand cela arrivera, mais l’émetteur espère que cela sera trop tard.
Le destinataire génère une nouvelle paire de clés et donne la clé publique à l’émetteur peu de temps avant la signature. Cela évite que l’émetteur prépare une chaîne de blocs en avance en travaillant dessus jusqu’à ce qu’il obtienne une avance suffisante, et qu’il effectue la transaction à ce moment là. Une fois la transaction émise, l’émetteur malhonnête commence à travailler sur une chaîne alternative contenant une version modifiée de la transaction.
Le destinataire attend que la transaction ait été ajoutée à un bloc et que z blocs aient été ajoutés à la suite de celui-ci. Il ne sait pas quel est exactement l’état d’avancement de l’attaquant, mais en supposant que les blocs légitimes aient mis le temps moyen attendu par bloc pour être générés, l’avancement potentiel de l’attaquant est une distribution de Poisson ayant comme valeur attendue :

Afin d’obtenir la probabilité que l’attaquant arrive encore à rattraper, nous multiplions la densité de Poisson pour chaque quantité de progression qu’il a pu obtenir par la probabilité qu’il rattrape depuis ce point :

En réarrangeant pour éviter de sommer à l’infini…

Converti en code C…
#include <math.h> double AttackerSuccessProbability(double q, int z) { double p = 1.0 – q; double lambda = z * (q / p); double sum = 1.0; int i, k; for (k = 0; k <= z; k++) { double poisson = exp(-lambda); for (i = 1; i <= k; i++) poisson *= lambda / i; sum -= poisson * (1 – pow(q / p, z – k)); } return sum; }
En effectuant quelques essais, nous observons que la probabilité diminue exponentiellement selon z :
q=0.1 z=0p=1.0000000 z=1p=0.2045873 z=2p=0.0509779 z=3p=0.0131722 z=4p=0.0034552 z=5p=0.0009137 z=6p=0.0002428 z=7p=0.0000647 z=8p=0.0000173 z=9p=0.0000046 z=10 p=0.0000012 q=0.3 z=0p=1.0000000 z=5p=0.1773523 z=10 p=0.0416605 z=15 p=0.0101008 z=20 p=0.0024804 z=25 p=0.0006132 z=30 p=0.0001522 z=35 p=0.0000379 z=40 p=0.0000095 z=45 p=0.0000024 z=50 p=0.0000006
Solutions pour P inférieur à 0.1%…
P < 0.001 q=0.10 z=5 q=0.15 z=8 q=0.20 z=11 q=0.25 z=15 q=0.30 z=24 q=0.35 z=41 q=0.40 z=89 q=0.45 z=340
12. Conclusion
Nous avons proposé un système de transactions électroniques ne reposant pas sur la confiance. Nous avons démarré avec un cadre habituel de pièces faites de signatures numériques, ce qui procure un contrôle fort de la propriété, mais reste incomplet sans un moyen d’empêcher les doubles dépenses. Pour résoudre ce problème, nous avons proposé un réseau pair-à-pair utilisant des preuves de travail pour enregistrer un journal public des transactions, qui devient rapidement inattaquable par le calcul si les noeuds honnêtes contrôlent la majorité de la puissance de calcul. Le réseau est robuste de par sa simplicité non structurée. Les noeuds travaillent de concert avec très peu de coordination. Ils n’ont pas besoin d’être authentifiés, puisque les messages ne sont pas envoyés à un destinataire particulier, et n’ont besoin d’être délivrés qu’au mieux. Les noeuds peuvent quitter et rejoindre le réseau à volonté, en acceptant la chaîne de preuve de travail comme preuve de ce qu’il s’est passé pendant leur absence. Ils votent en utilisant leur puissance de calcul, en exprimant leur accord vis à vis des blocs valides en travaillant à les étendre, et en rejetant les blocs invalides en refusant de travailler dessus. Toutes les règles nécessaires et les mesures incitatives peuvent être appliquées avec ce mécanisme de consensus.
Références
[1] W. Dai, « b-money, » http://www.weidai.com/bmoney.txt, 1998.
[2] H. Massias, X.S. Avila, and J.-J. Quisquater, « Design of a secure timestamping service with minimal trust requirements, » In 20th Symposium on Information Theory in the Benelux, May 1999.
[3] S. Haber, W.S. Stornetta, « How to time-stamp a digital document, » In Journal of Cryptology, vol 3, no 2, pages 99-111, 1991.
[4] D. Bayer, S. Haber, W.S. Stornetta, « Improving the efficiency and reliability of digital time-stamping, » In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.
[5] S. Haber, W.S. Stornetta, « Secure names for bit-strings, » In Proceedings of the 4th ACM Conference on Computer and Communications Security, pages 28-35, April 1997.
[6] A. Back, « Hashcash – a denial of service counter-measure, »
http://www.hashcash.org/papers/hashcash.pdf, 2002.
[7] R.C. Merkle, « Protocols for public key cryptosystems, » In Proc. 1980 Symposium on Security and Privacy, IEEE Computer Society, pages 122-133, April 1980.
[8] W. Feller, « An introduction to probability theory and its applications, » 1957.